The 10th International Estuarine Biogeochemistry Symposium May 19-22, 2008, Xiamen China

Effects of Winds on Hypoxia Formation in the Pearl River Estuarine Coastal Waters

Kedong YIN^{1,2,3}, Paul J. Harrison², Josheph Lee⁴, Weihua Zhou³

 ¹ LED, South China Institute of Oceanology, CAS, Guangzhou, China kdyin@scsio.ac.cn
² AMCE Program, Hong Kong University of Science and Technology Kowloon, Hong Kong, China
³ Australian Rivers Institute, Griffith University (Nathan Campus) Brisbane, Queensland, Australia
⁴ Department of Civil Engineering, University of Hong Kong

Outline

Global and Regional Hypoxia Perspectives Nitrogen Enrichment in the Pearl River Variability of Dissolved Oxygen in Hong Kong Oceanography Processes

Monsoons River Outflow

Effects of winds in preventing hypoxia formation in Hong Kong

Eutrophication Symptoms for Input of Anthropogenic Nutrients

Riverine, Atmospheric Nutrient Enrichment

World Fertilizer Consumption 1950-2003

Global perspective: Dead Zones

Source: UNEP, GEO Yearbook 2003 (Nairobi: 2004)

Dead Zone: Dissolved oxygen is < 2 ml/L UNEP (2006) estimated, ~200 dead zones in 2007.

Places suffered from Persistent Hypoxia

Mississippi River: Average annual concentrations

Turner et al. 1998. Proc. Natl. Acad. Sci. USA

Northern Gulf of Mexico:

a large area of hypoxia "dead zone" (20,000 km²) (<2 O_2 mg/L)

Science 281, 1998

Historic Trend of Nutrients in Yangtze River

Persistent Cyanobacterial Blooms in Dianchi Lake in Kunming

Harmful Algal Blooms in East China Sea off the Yangtze River Estuary (Satellite View)

May 4, 2000

Yangtze River

About 2 times size of the "dead zone"

The "Dead Zone" in the Chang Jiang Estuary-East China Sea Li et al., 2002

13,700 km²

Pearl River Drainage Basin

- River-2, 200 km long
- Area -454, 000 km²
- 100 million people

22.78 7

新疆 Xinjiang

西亚Tibet

甘甫 Gansu

青海 Qingha

四川

Sichuan 重慶

内蒙古

Inner Mongolia

Ningxia S 陕西 Shaanx

Chongqing

Reili

建制化

Hubei

Pearl River Estuary

Pearl River

- 2nd largest river in China
- 13th largest river in the world

Huo and Yin unpub

NO3 Distribution during summer

Huo and Yin unpub

Monthly Average of total inorganic nitrogen during 1991-2000 (Yin 2002)

Nitrogen is high in the Pearl River estuarine coastal waters

has increased 3 times in the past comparable to Mississippi and Yangtze which leads to hypoxia

What about dissolved oxygen in the Pearl River estuarine influenced coast?

Monthly Average of Dissolved O₂ during 1991-2000 Dissolved O₂ does not drop to hypoxia!

Western waters

Southern Water

Mirs Bay

Month

Lack of the decreasing trend!

Bottom Dissolved O₂ in 1980s

August 1984

July 1981

Summer 1968

Yin et al. 2004 CSR

DO in Hong Kong waters, back in 1954-55 (Chau & Abessor 1958, HKU Fish. J. No.2: 43-57, Fig. 11)

Seasonal hypoxia does not appear to occur over the coastal scale of the Pearl River estuarine influenced waters in South China Sea

However, there are local episodic events of hypoxia

Some ecosystems can accommodate a nutrient enrichment without showing apparent eutrophication symptoms. So, what makes the Pearl River Estuary "robust" to N enrichment?

Ecosystem Buffering

Ecosystem Buffering

Ecosystem Buffering

Effects of winds

Seasonal scale eventEpisodic events

Seasonal Scale Event

South China Sea

- 3 million km²
- Largest inland sea after 4 open Oceans
- 3 times as large as the total of other China coastal seas

Pearl River Estuary

Pearl River

- 2nd largest river in China
- 13th largest river in the world

Northeast Monsoons

January

Southwest Monsoons

July

Pearl River Discharge & Rainfall

Pearl River Estuarine Coastal Plume

Physical processes induced by monsoons and Pearl River discharge

Northeast Monsoon

Estuarine Circulation in the Pearl River Estuary and Coastal Waters

Two Layer Opposite Flow Circulation

Salinity in Summer

Pearl Estuary South China Sea B1 C1 B7 B4 C4 C10 C7 20-**River** -)epth(m Oceanic Sea 40-Waters 2002 July Cruise (Summer) 60 23.00 Y 22.80 9 22.60 22.40°N 22.20% 80 22.00% 21.60 °N 20 40 60 80 100 120 140 0 21.40°N 21.20 °N D7 **Relative Distance(km)** 21.00 °N 113.009 113.50°E 114.50° 115 00 9

Role of Monsoon Induced Physical Oceanographic Processes in Eutrophication

WinterWater Masses:Offshore water dominates due
to low river dischargeCirculation:DownwellingResidence time:Longer

Annual flushing mechanism to reduce the accumulative effects of nutrients

SummerWater Masses:Freshwater influence dominates at the
surface, oceanic waters dominate at the
bottomCirculation:Two layer flows

Residence time: Shorter

Within-season flushing mechanisms

Wind Episodic Events

Figure showing EPD routine water sampling stations

Figure showing EPD routine water sampling stations

SM18, 24 h time series, August 2006: **Temperature**

Aug 14-15

Aug 22-23

Aug 28-29

SM18, 24 h time series, August 2006: **Salinity**

Aug 14-15

Aug 22-23

Aug 28-29

35

34

33

32

31

30

29

SM18, 24 h time series, August 2006: Dissolved Oxygen

Effects of winds during summer : Winds >6 m s⁻¹ was found to be a wind event, which

--mixed the water column and nutrients --caused a phytoplankton bloom in summer in the Strait of Georgia

(Yin et al. 1997 MEPS).

Wind speed above 6 m s⁻¹ during 1979-1998

Frequency for the month during 1979-1998

Monthly accumulative frequency during 1979-1998

Effects of winds during summer :

Winds >6 m s-1

- frequently interrupts the water column stratification, and mixes oxygen downwards
- prevents the formation of seasonal hypoxia in the Pearl River influenced coastal waters.
- However, August is vulnerable to episodic events of hypoxia

Climate change – wind speed change: may trigger more frequently occurrences of hypoxia events

Acknowledgement

South China Sea Institute of Oceanology, Chinese Academy of Sciences: Innovative Project for large scale data

Hong Kong Research Grant Council Projects HKUST6478/05M

Hong Kong University Grant Council Project AoE/P-04/04-1

Hong Kong EPD for providing water quality data